About remainders in compactifications of paratopological groups

نویسندگان

چکیده مقاله:

In this paper‎, ‎we prove a dichotomy theorem for remainders in‎ ‎compactifications of paratopological groups‎: ‎every remainder of a ‎paratopological group $G$ is either Lindel"{o}f and meager or‎ ‎Baire‎. Furthermore, ‎we give a negative answer to a question posed in [D‎. ‎Basile and A‎. ‎Bella‎, ‎About remainders in compactifications of homogeneous spaces‎, ‎Comment‎. ‎Math‎. ‎Univ‎. ‎Carolin. ‎50 (2009), no. 4, 607--613‎].‎‎‎‎‎‎‎‎‎‎‎ ‎Some questions about‎ ‎remainders in compactifications of paratopological groups are posed‎.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ordered Compactifications with Countable Remainders

Countable compactifications of topological spaces have been studied in [1], [5], [7], and [9]. In [7], Magill showed that a locally compact, T2 topological space X has a countable T2 compactification if and only if it has n-point T2 compactifications for every integer n ≥ 1. We generalize this theorem to T2-ordered compactifications of ordered topological spaces. Before starting our generalizat...

متن کامل

A remark on Remainders of homogeneous spaces in some compactifications

‎We prove that a remainder $Y$ of a non-locally compact‎ ‎rectifiable space $X$ is locally a $p$-space if and only if‎ ‎either $X$ is a Lindel"{o}f $p$-space or $X$ is $sigma$-compact‎, ‎which improves two results by Arhangel'skii‎. ‎We also show that if a non-locally compact‎ ‎rectifiable space $X$ that is locally paracompact has a remainder $Y$ which has locally a $G_{delta}$-diagonal‎, ‎then...

متن کامل

On Compactifications with Path Connected Remainders

We prove that every separable and metrizable space admits a metrizable compactification with a remainder that is both path connected and locally path connected. This result answers a question of P. Simon. Connectedness and compactness are two fundamental topological properties. A natural question is whether a given space admits a connected (Hausdorff) compactification. This question has been st...

متن کامل

Menger remainders of topological groups

In this paper we discuss what kind of constrains combinatorial covering properties of Menger, Scheepers, and Hurewicz impose on remainders of topological groups. For instance, we show that such a remainder is Hurewicz if and only it is σ-compact. Also, the existence of a Scheepers non-σ-compact remainder of a topological group follows from CH and yields a P -point, and hence is independent of Z...

متن کامل

Cayley Compactifications of Abelian Groups

Following work of Rieffel [1], in this document we define the Cayley compactification of a discrete group G together with a set of generators S. We use algebraic methods in the general case to construct an explicit presentation of Cayley compactifications. In the particular case of Z, we use geometric methods to demonstrate a strong connection between the Cayley compactification and the polytop...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


عنوان ژورنال

دوره 40  شماره 3

صفحات  713- 719

تاریخ انتشار 2014-06-01

با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023